2011

PART 07 - ELECTRONICS AND COMMUNICATION ENGINEERING

(Answer ALL questions)

- 76. An average responding rectifier type electronic ac voltmeter has its scale calibrated in terms of the rms value of a sine wave. If a square wave voltage of peak amplitude of 100 V is measured using this voltmeter, what will be the reading indicated by the meter?
 - 1) 111 V
- 2) 100 V 3) 90.09 V 4) 70.7 V
- 77. A three input NAND gate is to be used as an inverter. Which one of the following measures will achieve better results?
 - 1) The two inputs not used are kept open
 - 2) The two inputs not used are connected to the ground (logic 0 level)
 - 3) The two inputs not used are connected to the logic high level
 - 4) Only one input is kept open and the other two inputs are either connected to the logic low or logic high state
- 78. A D/A converter has 5V full scale output voltage and an accuracy of $\pm 0.2\%$. The maximum error for any output voltage will be
 - 1) 5 mV
- 2) 10 mV
- 3) 20 mV
- 4) 25 mV
- 79. The ON voltage and forward break ver voltage of an SCR depend on the
 - 1) gate current alone
 - 2) bandgap of the semiconductor alone
 - 3) gate current and the serniconductor bandgap respectively
 - 4) applied voltage stone

E/TANCET-MBA-MCA-2005-08/mech-auto-aero-engg-2008/ts1

- 80. A series RL circuit is initially relaxed. A step voltage is applied to the circuit, If τ is the time constant of the circuit, the voltage across R and L will be the same at time t equal to
 - 1) τ log_e 2
- 2) $\tau \log_{e} (1/2)$
- 3) $(1/\tau) \log_{o}$
- 4) $(1/\tau) \log_{e}(1/2)$

- 81. The dissipation at the collector is in the quiescent state and increases with the excitation in the case of a
 - 1) Class A series fed amplifier
 - 2) Class A transistor coupled amplifier
 - 3) Class AB amplifier
 - 4) Class B amplifier
- 82. The interface chip used for data transmission between 8035 and a 16-bit ADC is
 - 1) 8259
- 2) 8255
- 3) 8253
- 4) 8251
- 83. To avaid inermal runaway in the design of an analog circuit, the operating point of the BJT should be such that it satisfies the condition
 - !) $V_{CF} = 0.5 V_{CC}$
- 2) $V_{CE} \le 0.5 V_{CC}$
- 3) V_{CE}≥0.5 V_{CC}
- 4) $V_{CF} \le 0.78 V_{CC}$
- \$4. If a class C power amplifier has an input signal with frequency of 200 KHz and the width of collector current pulses of $0.1 \, \mu s$, then the duty cycle of the amplifier will be
 - 1) 1%
- 2) 2%
- 3) 10%
- 4) 20%
- 85. In a feedback series regulator circuit, the output voltage is regulated by controlling the
 - 1) magnitude of the input voltage
 - 2) gain of the feedback transistor
 - 3) reference voltage
 - 4) voltage drop across the series pass transistor
- 86. Which one of the following types of hollow cavity resonators of the same surface would have the highest Q factor?
 - 1) Spherical cavity made of copper
 - 2) Spherical cavity made of silver
 - 3) Cylindrical cavity made of copper
 - 4) Cylindrical cavity made of silver

87 .	For a dominant mode, in a rectangular	95 .	For a Gunn diode, the drift velocity of electron through active drift region is 10^7cm/s and the					
	waveguide with breadth 10 cm, the guide							
	wavelength for a signal of 2.5 GHz will be		active region is 1	0×10^{-4} cm. The critical voltage				
	1) 20 cm 2) 18 cm		of the diode (crit	tical field = 3.2 kV/cm) is				
	3) 15 cm 4) 12 cm		1) 0.032 V	2) 0.32 V				
			3) 3.2 V	4) 32 V				
88.	For an open ended rectangular waveguide		,	,				
	antenna of size $0.9"\times0.4"$ excited in the TE_{10}	96.	A FM signal with	a deviation δ is passed through				
	(dominant) mode at $1=3$ cm, the gain is nearly		a mixer and has its frequency reduced fivefold					
	1) 1.5 2) 2.5 3) 26.5 4) 36.5			the output of the mixer is				
	1, 1.0 2, 2.0 0, 20.0 4, 00.0		1) δ	2) 5δ				
89.	Radiation from a helical antenna is		·	•				
07.	1) plane polarised		3) δ/5	4) intermediate				
	2) partially plane polarised	07	m c					
	irrcularly polarised	97.	The purpose of source coding is to					
	4) elliptically polarised		1) increase the information transmission rate					
	4) emplically polarised			Cormation transmission rate				
00	A loss less line having characteristic impedance		3) decrease the 5/N ratio					
90.			4) decrease the pr	obability of error				
	Z ₀ is terminated in a pure reactance of value		_ (())					
	-jZ ₀ . The VSWR of the line will be	98.		acity under the Gaussian noise				
	1) 10 2) 2 3) 1 4) ∞		environment for a discrete memoryless channel					
				h of 4 MHz and SNR of 31 is				
91.	For a parabolic reflector antenna with diameter	<	1), 20 Mbps	2) 4 Mbps				
	of 3 m, the far field pattern measurement at 10		3) 8 Bbps	4) 4 Kbps				
	GHz should be carried out at a distance of	- //	\\/\)					
	atleast	39.	// message sign	al band limited to 5 KHz is				
	1) 30 m 2) 200 m 3) 400 m 4) 600 m		sampled at the	minimum rate as dictated by				
			the sampling	theorem. The number of				
92 .	In a microwave measurement setup, the power		quantisation lev	vels is 64. If the samples are				
	reaching to the load is found to be 50 min. We	ĺ	encoded in bina	ry form, the transmission rate				
	3 dB coupler is placed before the local the		is					
	power to the load will be		1) 60 Kbps	2) 50 Kbps				
	1) 50 mW 2) 25 mW		3) 32 Kbps	4) 10 Kbps				
	3) 12.5 mW 4) 6.25 row							
		100	PAM signals can	be demodulated by using a				
93 .	Which one of the following requency bands is		1) low pass filter a	alone				
	allocated by ITU (International		2) a Schmitt trigge	er followed by LPF				
	Telecommunication Union; for DTH (Direct to		3) a differentiator	followed by LPF				
	Home Service)?		4) a clipper circuit	followed by LPF				
	1) (14/12) GHz 2\ (6/4) GHz							
	3) (2/1) GHz 4) (42/40) GHz	101	. In an ADM transmission system, the output					
			signal amplitudes for 1's and 0's are					
94.	The extended range propagation occurs due to		1) fixed and the re	eception rate is also fixed				
	1) high conductivity of the ground		ception rate is variable					

- 1) high conductivity of the ground
- 2) low conductivity of the ground

E/TANCET-MBA-MCA-2005-08/mech-auto-aero-engg-2008/ts2

- 3) blobs of different dielectric constants randomly distributed in the volume of the upper atmosphere
- 4) high conductivity of the upper atmosphere

3) variable and the repetition rate is variable

4) variable but the repetition rate is fixed

102.	In optical communica	tion, the losses in optical	l	1) Z	Zero		2)	Unity			
	fibres can be caused l	_		3) 1	/./2			$\sqrt{2}$			
	a) impurities	- 3		0, 1	·/ V Z		1)	٧Z			
	b) microbending			How many roots of the characteristic equa					equation		
	c) attenuation in glass			$s^5+s^4+2s^3+2s^2+3s+15=0$ lie in the left half of							
	d) stepped index oper			the	s-plane?						
	Which of these statem			1) 1	L	2) 3	3)	5	4)	7	
	1) (a), (b) and (c)	2) (a), (c) and (d)									
	3) (a), (b) and (d)	4) (b), (c) and (d)	110.	For	a 2nd (order tra	nsfe	er fun	ction	T(s) = 4/	
	-, (,, (-, (,	-, (-,, (-, (,		(s ² +	-2s+4),	the maxir	num	reson	ance p	eak will	
103.	The bandwidth of a 'I	N' bit binary coded PCM		be					_		
		a signal having bandwidth		1) 4	ļ.		2)	4/3			
	of 'f' Hz is			3) 2)		4)	$2/\sqrt{3}$			
	1) f / N Hz	2) (f / N ²) Hz		0, 2	•		-/	_, ,			
	3) Nf Hz	4) N ² f Hz	111	Lan	lace tra	nsform, of	fire)	-cin2+i	ic		
	o, 11112	1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	111.	_	/{s+4}	1191011)/1 ()		1/{s-4			
104.	A glass fibre has refra	ctive indices of 1.5 and 1.			$2/\{s(s^2+4)\}$	11		$\frac{1}{(s-4)}$ $\frac{2}{(s(s^2)^2)}$			
	_	m/s the multipath time		0) 2	2/ (3(3 T	:11	Τ)	2/ (3(3	-1))		
	dispersion will be	•	112	A c	ausal	TI syster	n w	ith rai	tional	system	
	1) 2.5 ns/m	2) 2.5 μs/m				z) is stable				-	
	3) 5 ns/m	4) 5 μs/m				nside the				_	
	, ,	, , ,				gnitude.	uiii	circic	1.0., 11	icy musi	
105.	105. The protocol layer associated with multiplexing and cell switching functions is the			.00	realer th	-					
				2) 1255 than 1							
	1) ATM Adaptation La	3) greater than and equal to 1									
	2) ATM Layer		Ro	11//	, equal to z						
	3) Physical Layer) '	•						
	4) Session Layer		113.	The	system	y(n) = x(n-1)	-2)-	2x(n-1	7) is a		
106.	While forming Routh'	s array, the situation of a		1) D	OT dynan	nic system	2)	DT sta	atic syst	em	
	row of zeros indicates		ľ	3) C	CT static	system	4)	Arbitra	ary syste	em	
	1) has symmetrically lo	- 10// 1/									
	2) is not sensitive to var	114. The number of points required in DFT when 50									
	3) is stable			ms signal has no significant spectral content							
	4) is unstable			abo	ve 500 l	Hz with a	reso	lution	of 10	Hz is	
40-				1) 5	50	2) 60	3)	70	4) 1	100	
107.		hich the unity feedback									
		(+2)(-+1) crosses the	115.	. A sy	ystem ha	ns the tran	sfer	functi	on (1–s	s)/(1+s).	
	imaginary axis is			It is	a						
	1) 4 2) 16	3, 48 4) 84				num phase	-	em			
108. In the 2nd order convoleystem the value of the			2) minimum phase system								
	resonant peak will be	unity when the damping			ow pass s	-					
	ratio has a value of			4) s	econd or	der system					
ELECTRONICS AND COMMUNICATION ENGG2011 : ANSWERS											
7.											
	1 77 3 78 1 87 3 88			4		. 4 83 . 3 93		84 94		5 2 5 3	
1	1					. 3 93 . 4 103					
		3 109 2 110 4									
1										1	

PART 07 — ELECTRONICS AND COMMUNICATION ENGG.

DETAILED SOLUTIONS

78. **(2)**

Maximum error = $\frac{0.2}{100} \times 5 = 10 \text{ mV}$

90. (4)

$$|\rho| = \frac{\sqrt{Z_0^2 + Z_0^2}}{\sqrt{Z_0^2 + Z_0^2}} = \frac{\sqrt{Z} Z_0}{\sqrt{Z} Z_0} = 1$$

VSWR =
$$\frac{1+\rho}{1-\rho} = \frac{1+1}{1-1} = \frac{2}{0} = \infty$$

95. (3)

Critical voltage V = $\ell \times$ critical field = $10 \times 10^{-4} \times 3.2 \text{ kV/cm}$

 $= 10 \times 10^{-4} \times 3.2 \text{ kV/cm}$

= $10 \times 10^{-4} \times 3.2 \times 10^{3} \text{ V/cm}$ = 3.2 V

98. (1)

$$B \log_2[1+31] = 4 \log_2[32]$$

 $= 4 \log_2 2^5$

= 20 Mbps

110. (4)

$$\varepsilon = \frac{2}{2\omega n} = \frac{2}{2\times 2} = 0.5$$

$$\mu_p \ = \ e^{-\pi\epsilon/\sqrt{1-\epsilon^2}}$$

Maximum value = $1+0.16 = \frac{2}{\sqrt{3}}$

114. (4)

$$f_s = 2f_m = 2 \times 500$$

$$T = \frac{1}{1000} = 0.001 \, S$$

$$\Delta f = \frac{2f_m}{N}$$

$$10 = \frac{1000}{N}$$

$$N = 100$$